Appendix 1.3

1. Bounded convergent sequences. If $\left\{a_{n}\right\}_{n \geq 1}$ is a sequence that converges to ℓ as $n \rightarrow \infty$ and the a_{n} are bounded for all $n \geq 1$, i.e. $\left|a_{n}\right| \leq B$ for some $B>0$, then $|\ell| \leq B$.

Proof by contradiction. Assume $|\ell|>B$. Choose $\varepsilon=(|\ell|-B) / 2>0$ in the definition of $\lim _{n \rightarrow \infty} a_{n}=\ell$ to find $N \geq 1$ such that if $n \geq N$ then $\left|a_{n}-\ell\right|<\varepsilon$. Pick any $n_{0} \geq N$, then, by a form of the triangle inequality

$$
\begin{aligned}
\left|a_{n_{0}}\right| & =\left|\ell+a_{n_{0}}-\ell\right| \geq|\ell|-\left|a_{n_{0}}-\ell\right| \\
& >|\ell|-\varepsilon=|\ell|-\frac{|\ell|-B}{2} \\
& =\frac{|\ell|+B}{2}>\frac{2 B}{2}=B,
\end{aligned}
$$

making use of the assumption $|\ell|>B$. Thus $\left|a_{n_{0}}\right|>B$, contradicting the fact that $\left|a_{n}\right| \leq B$ for all $n \geq 1$. Hence assumption is false, i.e. $|\ell| \leq B$.
2. Exponential Function: graphs The graphs for the results of Theorem 2 are

and

Though they suffice for the applications of the Sandwich Rule the lower bounds seem particularly poor. It would appear from the graphs that we should have

$$
e^{x}>1+x \quad \text { and } \quad \frac{e^{x}-1}{x}>1+\frac{x}{2} .
$$

for all real x. Can you prove these, especially for negative x ?
3. Exponential Function In the lectures we proved

$$
\left|e^{x}-1-x\right| \leq|x|^{2}
$$

for $|x|<1 / 2$. The method of proof can be extended.
Lemma Prove that for all $k \geq 1$,

$$
\begin{equation*}
\left|e^{x}-\sum_{r=0}^{k} \frac{x^{r}}{r!}\right| \leq \frac{2|x|^{k+1}}{(k+1)!} \tag{5}
\end{equation*}
$$

for $|x|<1 / 2$.
Solution Start from the definition of an infinite series as the limit of the sequence of partial sums, so

$$
\begin{equation*}
e^{x}-\sum_{r=0}^{k} \frac{x^{r}}{r!}=\lim _{N \rightarrow \infty} \sum_{r=k+1}^{N} \frac{x^{r}}{r!}=x^{k+1} \lim _{N \rightarrow \infty} \sum_{j=0}^{N-k-1} \frac{x^{j}}{(j+k+1)!} . \tag{6}
\end{equation*}
$$

Then, by the triangle inequality, (applicable since we have a finite sum),

$$
\begin{aligned}
\left|\sum_{j=0}^{N-k-1} \frac{x^{j}}{(j+k+1)!}\right| \leq & \sum_{j=0}^{N-k-1} \frac{|x|^{j}}{(j+k+1)!} \leq \frac{1}{(k+1)!} \sum_{j=0}^{N-k-1}|x|^{j} \\
& \text { since }(j+k+1)!\geq(k+1)!\text { for all } j \geq 0, \\
= & \frac{1}{(k+1)!}\left(\frac{1-|x|^{N-k}}{1-|x|}\right),
\end{aligned}
$$

on summing the Geometric Series, allowable when $|x| \neq 1$. In fact we have $|x|<1 / 2<1$, which gives the second inequality in

$$
\frac{1-|x|^{N-k}}{1-|x|} \leq \frac{1}{1-|x|}<\frac{1}{1-1 / 2}=2 .
$$

Hence

$$
\left|\sum_{j=0}^{N-k-1} \frac{x^{j}}{(j+k+1)!}\right| \leq \frac{2}{(k+1)!}
$$

for all $N \geq 0$. Now use the result that if a sequence $\left\{a_{n}\right\}$ converges and $\left|a_{n}\right| \leq B$ for some B and all n then $\left|\lim _{n \rightarrow \infty} a_{n}\right| \leq B$. Thus

$$
\left|\lim _{N \rightarrow \infty} \sum_{j=0}^{N-k-1} \frac{x^{j}}{(j+k+1)!}\right| \leq \frac{2}{(k+1)!}
$$

Combined with (6) gives the required result.

4. Example

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=\frac{1}{2} .
$$

Solution Take $k=2$ in (5) and divide the resulting inequality $\left|e^{x}-1-x-x^{2} / 2\right| \leq$ $\left|x^{3}\right| / 3$ through by $|x|^{2}$ to get

$$
\left|\frac{e^{x}-1-x-x^{2} / 2}{x^{2}}\right| \leq \frac{|x|}{3} .
$$

for $|x| \leq 1 / 2$. This is just shorthand for

$$
\begin{equation*}
\frac{1}{2}-\frac{|x|}{3} \leq \frac{e^{x}-1-x}{x^{2}} \leq \frac{1}{2}+\frac{|x|}{3} \tag{7}
\end{equation*}
$$

for $|x| \leq 1 / 2$. Let $x \rightarrow 0$ when $|x| \rightarrow 0$ so, by the Sandwich Rule,

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=\frac{1}{2}
$$

From the graph the lower bound in (7) looks weak.

It looks reasonable that

$$
\frac{e^{x}-1-x}{x^{2}} \geq \frac{1}{2}+\frac{x}{6}
$$

for all $x \in \mathbb{R}$. Could you prove this?
5. Rates of Convergence When you have a result of the form $\lim _{x \rightarrow a} f(x)=$ L the next question might be: how 'fast' does $f(x) \rightarrow L$? How do you measure this 'speed'? Perhaps comparing $f(x) \rightarrow L$ with x tending to a, i.e. consider the ratio $(f(x)-L) /(x-a)$ and its limit,

$$
\lim _{x \rightarrow a} \frac{f(x)-L}{x-a} .
$$

So after $\lim _{x \rightarrow 0} e^{x}=1$ in Theorem 2i. we were interested in

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x-0}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{x},
$$

Part ii. for Theorem 2.

We can continue for the exponential function. From $\lim _{x \rightarrow 0}\left(e^{x}-1\right) / x=$ 1 we would be interested in

$$
\lim _{x \rightarrow 0} \frac{\frac{e^{x}-1}{x}-1}{x-0}=\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}
$$

the subject of Example 4.
Similarly, after $\lim _{\theta \rightarrow 0} \sin \theta=0$, we would be interested in

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta-0}{\theta-0}=\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}
$$

the subject of Example 4. Since this limit is 1 we think of $\sin \theta$ and θ tending to 0 at the same rate.

After $\lim _{\theta \rightarrow 0} \cos \theta=1$ we looked, in Example 5, at

$$
\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}
$$

Since the limit is 0 we think of $\cos \theta$ tending to 1 faster than θ tending to 0 . We can continue and look at

$$
\lim _{\theta \rightarrow 0} \frac{\frac{\cos \theta-1}{\theta}-0}{\theta-0}=\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta^{2}} .
$$

This was the subject of Example 6 where it's limit was found to be $-1 / 2$. We think of $\cos \theta$ tending to 1 at the same rate as θ^{2} tends to 0 .

