Appendix 1.3

1. Bounded convergent sequences. If $\{a_n\}_{n\geq 1}$ is a sequence that converges to ℓ as $n \to \infty$ and the a_n are bounded for all $n \geq 1$, i.e. $|a_n| \leq B$ for some B > 0, then $|\ell| \leq B$.

Proof by contradiction. Assume $|\ell| > B$. Choose $\varepsilon = (|\ell| - B)/2 > 0$ in the definition of $\lim_{n\to\infty} a_n = \ell$ to find $N \ge 1$ such that if $n \ge N$ then $|a_n - \ell| < \varepsilon$. Pick any $n_0 \ge N$, then, by a form of the triangle inequality

$$|a_{n_0}| = |\ell + a_{n_0} - \ell| \ge |\ell| - |a_{n_0} - \ell|$$

> $|\ell| - \varepsilon = |\ell| - \frac{|\ell| - B}{2}$
= $\frac{|\ell| + B}{2} > \frac{2B}{2} = B,$

making use of the assumption $|\ell| > B$. Thus $|a_{n_0}| > B$, contradicting the fact that $|a_n| \leq B$ for all $n \geq 1$. Hence assumption is false, i.e. $|\ell| \leq B$.

2. Exponential Function: graphs The graphs for the results of Theorem 2 are

Though they suffice for the applications of the Sandwich Rule the lower bounds seem particularly poor. It would appear from the graphs that we should have

$$e^x > 1 + x$$
 and $\frac{e^x - 1}{x} > 1 + \frac{x}{2}$.

for all real x. Can you prove these, especially for negative x?

3. Exponential Function In the lectures we proved

$$\left|e^{x} - 1 - x\right| \le \left|x\right|^{2}$$

for |x| < 1/2. The method of proof can be extended.

Lemma Prove that for all $k \ge 1$,

$$\left| e^{x} - \sum_{r=0}^{k} \frac{x^{r}}{r!} \right| \le \frac{2 \left| x \right|^{k+1}}{(k+1)!}$$
(5)

for |x| < 1/2.

Solution Start from the definition of an infinite series as the limit of the sequence of partial sums, so

$$e^{x} - \sum_{r=0}^{k} \frac{x^{r}}{r!} = \lim_{N \to \infty} \sum_{r=k+1}^{N} \frac{x^{r}}{r!} = x^{k+1} \lim_{N \to \infty} \sum_{j=0}^{N-k-1} \frac{x^{j}}{(j+k+1)!}.$$
 (6)

and

Then, by the triangle inequality, (applicable since we have a **finite** sum),

$$\left|\sum_{j=0}^{N-k-1} \frac{x^j}{(j+k+1)!}\right| \leq \sum_{j=0}^{N-k-1} \frac{|x|^j}{(j+k+1)!} \leq \frac{1}{(k+1)!} \sum_{j=0}^{N-k-1} |x|^j$$

since $(j + k + 1)! \ge (k + 1)!$ for all $j \ge 0$,

$$= \frac{1}{(k+1)!} \left(\frac{1 - |x|^{N-k}}{1 - |x|} \right),$$

on summing the Geometric Series, allowable when $|x| \neq 1$. In fact we have |x| < 1/2 < 1, which gives the second inequality in

$$\frac{1-|x|^{N-k}}{1-|x|} \le \frac{1}{1-|x|} < \frac{1}{1-1/2} = 2.$$

Hence

$$\left|\sum_{j=0}^{N-k-1} \frac{x^j}{(j+k+1)!}\right| \le \frac{2}{(k+1)!}$$

for all $N \ge 0$. Now use the result that if a sequence $\{a_n\}$ converges and $|a_n| \le B$ for some B and all n then $|\lim_{n\to\infty} a_n| \le B$. Thus

$$\left|\lim_{N \to \infty} \sum_{j=0}^{N-k-1} \frac{x^j}{(j+k+1)!}\right| \le \frac{2}{(k+1)!}.$$

Combined with (6) gives the required result.

4. Example

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2}.$$

Solution Take k = 2 in (5) and divide the resulting inequality $|e^x - 1 - x - x^2/2| \le |x^3|/3$ through by $|x|^2$ to get

$$\left|\frac{e^x - 1 - x - x^2/2}{x^2}\right| \le \frac{|x|}{3}.$$

for $|x| \leq 1/2$. This is just shorthand for

$$\frac{1}{2} - \frac{|x|}{3} \le \frac{e^x - 1 - x}{x^2} \le \frac{1}{2} + \frac{|x|}{3} \tag{7}$$

for $|x| \leq 1/2$. Let $x \to 0$ when $|x| \to 0$ so, by the Sandwich Rule,

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2}.$$

From the graph the lower bound in (7) looks weak.

It looks reasonable that

$$\frac{e^x - 1 - x}{x^2} \ge \frac{1}{2} + \frac{x}{6}$$

for all $x \in \mathbb{R}$. Could you prove this?

5. Rates of Convergence When you have a result of the form $\lim_{x\to a} f(x) = L$ the next question might be: how 'fast' does $f(x) \to L$? How do you measure this 'speed'? Perhaps comparing $f(x) \to L$ with x tending to a, i.e. consider the ratio (f(x) - L)/(x - a) and its limit,

$$\lim_{x \to a} \frac{f(x) - L}{x - a}.$$

So after $\lim_{x\to 0} e^x = 1$ in Theorem 2i. we were interested in

$$\lim_{x\to 0}\frac{e^x-1}{x-0}=\lim_{x\to 0}\frac{e^x-1}{x},$$

Part ii. for Theorem 2.

We can continue for the exponential function. From $\lim_{x\to 0} (e^x - 1)/x = 1$ we would be interested in

$$\lim_{x \to 0} \frac{\frac{e^x - 1}{x} - 1}{x - 0} = \lim_{x \to 0} \frac{e^x - 1 - x}{x^2},$$

the subject of Example 4.

Similarly, after $\lim_{\theta \to 0} \sin \theta = 0$, we would be interested in

$$\lim_{\theta \to 0} \frac{\sin \theta - 0}{\theta - 0} = \lim_{\theta \to 0} \frac{\sin \theta}{\theta},$$

the subject of Example 4. Since this limit is 1 we think of $\sin \theta$ and θ tending to 0 at the same rate.

After $\lim_{\theta \to 0} \cos \theta = 1$ we looked, in Example 5, at

$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta}.$$

Since the limit is 0 we think of $\cos \theta$ tending to 1 faster than θ tending to 0. We can continue and look at

$$\lim_{\theta \to 0} \frac{\frac{\cos \theta - 1}{\theta} - 0}{\theta - 0} = \lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta^2}.$$

This was the subject of Example 6 where it's limit was found to be -1/2. We think of $\cos \theta$ tending to 1 at the same rate as θ^2 tends to 0.